Inside This Issue

- Grass Tetany Season is Around the Corner, p.2
- Yearling Bull Management, p.3
- Summer Annuals, p.4
- Pasture Fertility, p.5
- Make Better Use of Available Forage, p.5
- Don’t Let Your Hay Go Up In Flames, p.6
- Coming Events, p.6

Contact Us

Stephen W. Duckett
County Extension Director
North Carolina Cooperative Extension
Buncombe County Center
94 Coxe Avenue
Asheville, NC 28801-3620

Phone: (828) 255-5522
Fax: (828) 255-5202
http://buncombe.ces.ncsu.edu

WNC Regional Livestock Center Opening

I am pleased to announce that the WNC Regional Livestock Center, located at 474 Stock Drive in Canton, will hold its first sale on **Monday March 21, at 12:00 noon**. The sale day is Monday for future sales as well. Cattle will be received starting at 7:00 am on sale day. Cattle will also be taken in on Sunday, March 20, from 1:00 to 7:00 pm. Please help spread the word to any producers who may be interested. Questions about this sale and future sales can be directed to the WNC Regional Livestock Center at (828) 646-3700 or Southeast Livestock Exchange at (828) 454-0267. I look forward to seeing you there!

It is important to note all livestock traffic should use the industrial entrance to the new livestock market which is Freedom Drive to Beaverdam Road. The following are specific directions traveling from the east or west:

I-40 West: Take Exit 33 the Newfound Road Exit, at the off-ramp continue straight on Freedom Drive. At stop sign at bottom of hill make a left on Beaverdam. Stock Drive is on the right.

I-40 East: Take Exit 33 the Newfound Road Exit, at the off-ramp make a left driving over the interstate. Take the first left on Freedom Drive. At stop sign at bottom of hill make a left on Beaverdam. Stock Drive is on the right.

Additional Photos on Page 2

Persons with disabilities and persons with limited English proficiency may request accommodations to participate in activities mentioned in this newsletter. Please contact Steve Duckett at 828-255-5522 during business hours at least 3 days prior to the event to discuss accommodations.
Grass Tetany Season is Around the Corner

Contributed by Dr. Mark A. McCann, Extension Animal Scientist, Virginia Tech

Early spring is usually the peak period for the occurrence of grass tetany in lactating beef cows. Grass tetany is caused by low blood levels of magnesium and is worsened by high levels of nitrogen and potassium and low levels of calcium and magnesium intake. The lush new growth of cool season perennials and annuals consumed by spring calving cows is a recipe for trouble. Heavy nitrogen and potassium fertilization intensify the problem. This makes it more of an issue in the poultry production areas where litter is used routinely as a pasture fertilizer. Similar risks can be observed on pastures fertilized with other animal manures or biosolids.

Grass tetany can be prevented by supplementing lactating cows with 0.5 to 1.0 ounces of supplemental magnesium per day during the high risk periods. There are several commercial high magnesium mineral options available from feed and farm suppliers across the area. Commonly called High-Mag blocks or mixes, these should contain about 14% magnesium with a targeted intake of 4 ounces per head per day. For small herds, it is usually more practical and easier to purchase these supplements than to mix individual ingredients.

Cattlemen also have the option of mixing their own magnesium-based mineral mix on the farm. This mix is: 25% trace mineral salt, 25% dicalcium phosphate, 25% magnesium oxide, and 25% corn or dried molasses. A mature cow needs to consume 4-5 ounces of the mineral mix daily. With this level of intake, a cow will receive 1-1.2 ounces of magnesium oxide daily. Magnesium oxide is about 60% magnesium so cows will receive 0.6 to 0.7 ounces of magnesium daily from this mineral mix. In most situations this should control grass tetany. When using this mix or any High-Mag mineral mix, be sure to remove all other sources of salt from the cattle’s diet.

Monitoring consumption of any magnesium supplement is important to insure that cattle are consuming the supplement at a level to provide protection. Magnesium oxide is an unpalatable mineral, and the salt and corn/molasses are added in an effort to improve palatability and consumption. Monitoring intake will allow modification in the recipe. It is a mistake to believe that lower-than-expected consumption is due to a lack of need on the cow’s part. More likely it is an indication of the palatability of the mineral mix.

Other than palatability, low mineral consumption can be caused by poor mineral feeder placement or an inadequate number of feeders for the number of cows. Locate the feeders in the high-traffic or loafing areas and provide one feeder for every 20 cows. This will enable cows at the bottom of the herd pecking order to consume enough minerals.

High-Mag minerals are only necessary and effective during high-risk situations. There is no advantage in using them during the other times of the year; however, it is important to start supplementation ahead of your critical period to allow cows an opportunity to adapt to the mix and to insure necessary intake levels are achieved.
Spring bull buying season has arrived. Beef producers spend a great deal of time studying performance information, EPD’s, pedigrees and other pertinent information to acquire the next herd bull. Of equal importance is the care and management of the newly-acquired bull. In most cases, this bull is a yearling bull and proper management and nutrition are essential for the bull to perform satisfactorily during the breeding season as well as in subsequent breeding seasons.

Many newly purchased yearling bulls have recently completed a performance test, which provided a high plane of nutrition to properly evaluate the potential growth of the bull. Upon completion of this test, the energy level of the diet should gradually be reduced to prevent excessive fat deposition. The reduction in energy may be accomplished through restricting intake of high energy grain supplements, in conjunction with supplying a total diet lower in energy content (primarily forage). Young bulls should be managed to be a body condition score 6 at turn out. This will give the bull adequate reserves of energy for use during the breeding season. Yearling bulls can be expected to lose 100 pounds or more during the course of the breeding season.

Acquiring a new yearling bull at least 60 to 90 days prior to the breeding season is critical from several aspects. First, this leaves ample time for the new bull to get adjusted to the feed and environment of his new home, as well as an opportunity for several new bulls to be comingled for a period of time prior to turnout. Secondly, adequate exercise, in combination with a proper nutritional program, is essential to “harden” these bulls up prior to the breeding season. A facility for the newly acquired bull that allows for ample exercise will help create bulls that are physically fit for the breeding season. The nutrition of the bull will be dependent on body condition. Yearling bulls are still growing and developing and should be targeted to gain 2.0 to 2.5 pounds per day from a year of age through the breeding season. Bulls weighing approximately 1,200 pounds will consume 25 to 30 pounds of dry matter per day. This intake may consist of high-quality pasture plus 12 lbs. corn, grass legume hay plus 12 lbs. corn, or 80 lbs. corn silage plus 2 lbs. protein supplement. Provide adequate clean water and a complete mineral-free choice.

Prior to the breeding season, all bulls should receive breeding soundness exams to assure fertility. All bulls that are to be used should have a BSE annually. Because a variety of factors may affect bull fertility, it may be advisable to retest young bulls before the breeding season even if it has only been a few months since their last BSE.

The breeding season should be kept to a maximum of 60 days for young bulls. This will prevent over use of the bull, severe weight loss and reduced libido. Severe weight loss may impair future growth and development of the young bull and reduce his lifetime usefulness. When practical, supplementing young bulls with grain during the breeding season will reduce excessive weight loss.

In single bull situations, young bulls can normally be expected to breed a number of females approximately equal to their age in months. Using this rule of thumb, a newly purchased bull that is 18 months of age could be placed with 18 cows or heifers. Bulls used together in multiple-sire breeding pastures should be of similar age and size. Young bulls cannot compete with older bulls in the same breeding pasture. A common practice is to rotate bulls among different breeding pastures every 21 to 28 days. This practice decreases the breeding pressure on a single bull. Some producers use older bulls early in the breeding season, and then replace them with young bulls. The appropriate bull-to-female ratio will vary from one operation to the next based on bull age, condition, fertility, and libido, as well as the size of the breeding pasture. Other factors to consider are the available forage supply and length of the breeding season.

All bulls should be observed closely to monitor their breeding behavior and libido to ensure they are servicing and settling cows. Additionally, observe the cow herd to monitor their estrous cycles. Many females coming back into heat may be the
Yearling Bull Management (continued)

result of a subfertile or infertile bull. All bulls should be monitored for injury or lameness that may compromise their breeding capability.

Young bulls require a relatively high plane of nutrition following the breeding season to replenish body condition and meet demands for continued growth. Yearling bulls should be maintained in a separate lot from mature bulls, so these additional nutritional requirements can be provided. Body condition and projected mature size of the bull will determine his nutrient requirements during the nine months following the breeding season. Bulls should be kept away from cows in an isolated facility or pasture after the breeding season. In the winter months, provide cover from extreme weather that may cause frostbite to the scrotum resulting in decreased fertility.

All herd bulls should receive breeding soundness exams to assure fertility on an annual basis. Assess the bull battery well in advance of the breeding season so that new sires can be acquired in a timely fashion.

Summer Annuals

Once again, I have to mention the benefit of summer annuals to a grazing system. We all know that in the heat of the summer our fescue pastures are gone. This is due to the fact that fescue is a cool season grass and it goes dormant in the hottest part of the summer. I realize that all producers don’t have the land available to plant warm-season annuals, but this is a practice that needs be looked at a little closer by everyone. Most of the warm-season annuals that I will mention have pretty decent drought tolerance and will respond to even small amounts of rainfall.

Sorghum/sudangrass, pearl millet, crabgrass varieties and teff grass are all options for producers in Western North Carolina. Any of these grasses can be grazed or made into hay. I personally feel they would have the most benefit in a grazing system. Each of these grasses should be planted in mid May and allowed to become established prior to grazing. Once you turn the animals into the established stand, graze down to about 6 inches and remove the animals from the field. This process can be repeated as many as 3-4 times throughout the summer, depending on rainfall. This can be a huge benefit to your fescue pastures that really need a rest during those summer months.

The ideal setting for planting summer annuals is a fenced cropland setting. The reason this is ideal is due to the fact that you can dedicate this “pasture” solely to a summer annual/winter annual rotation. You will use it for grazing in the summer and graze it down in the ground around September when it is time to plant your winter annuals for grazing. I will note that if your summer annual gets ahead of you for some reason, you may also make hay or haylage out of this crop. After your winter annual becomes established, you then have repeated grazing throughout the winter months. In this setting, neither the summer or winter annual is competing at any time with your fescue pastures because it is solely dedicated to these two annual crops. You may also drill these summer annuals into existing fescue pastures, but you will need to graze them really close about the time fescue starts coming back out in the fall. Once you have grazed it close, remove the animals and allow the fescue to get ahead of the summer annual that is starting to decline in regrowth.

The best way to plant these annuals is with a no-till drill. Buncombe Soil & Water Conservation has a drill to rent to producers. There are also other locations that rent no-till drills. If you have any questions about your livestock operation, feel free to call Steve Duckett at 828-255-5522.

Foxtail Millet

Did you know that you can receive this newsletter via email? If you are interested, please contact us either by phone at 828-255-5522 or email at deanna_jordan@ncsu.edu.
Pasture Fertility

Typically, most livestock producers fertilize pastures and hayfields in the spring. This is a practice that our fathers and grandfathers have taught us. While not a bad practice, we may be thinking about it in the wrong way. One thing wrong with “doing what we have always done” is that we apply the same fertilizer blend year after year. In many cases, our pastures do not need each of the three nutrients each year; and we could save money by taking soil samples and knowing exactly what they need. If your pasture only needs nitrogen, you don’t want to waste your money on a 19-19-19 fertilizer that has the phosphate and potassium that you don’t need. You could save some money by applying the recommended rate of a 34-0-0. In addition, for most of us this spring application is the only fertilizer our fields get all year long. This practice is a major player in the problem with pastures getting ahead of us.

With hayfields, it is very important that we fertilize in the spring if we want to have good hay yields. By fertilizing our hayfields in the spring, we also can create ourselves a problem. Sometimes we end up with more hay than we can get across at the optimum time. When late June/early July gets here, and we’re still not finished making hay, we end up with lower-quality hay. It’s important to pay close attention to fertilizing only the hay ground you know you can get across when the hay is at its optimum level. The rest is still going to be there and by the time you get to it, it will still be a lower quality.

It’s also very important to fertilize our spring pastures in order to take advantage of the spring flush of grass; however, I think we need to start looking at it from a different angle. By applying all of our fertilizer in the spring, we are wasting some of those fertilizer dollars on that grass that our livestock cannot keep up with—this is the grass mentioned earlier that becomes too mature and puts on those seed heads. If you plan to rotate on a regular basis to keep the grass in a vegetative state, then you might do OK with a spring application only; but I think we need to start thinking about a fall application on some of our pastures.

By applying some of our fertilizer in the fall (mid-August to early-September), we will be encouraging our fall growth. By applying 60-75 lbs of nitrogen per acre, our grass will grow much better, allowing us to stockpile some grass which will extend our grazing season into the winter months. This practice has the potential to dramatically reduce the amount of hay we need during those winter months, which will decrease the amount of hay we need to fertilize and make during the spring.

Make Better Use of Available Forage

Contributed by Dr. Clyde D. Lane, Jr.,
Professor & Beef Cattle Extension Specialist – University of Tennessee Extension

With the cost of fertilizer and equipment increasing, it is important that minimal forage is wasted by cattle. With a little extra expense and labor, beef producers can make better use of available pastures.

Cattle are not efficiently using the forage if there are areas in the pasture where the grass is tall and other areas where it is short. Do not clip these pastures to get them growing evenly; clipping is expensive and it wastes grass. Instead, reduce the pasture size so animals must graze all of the forage. Divide the pastures that are currently being grazed as a starting point. Be sure that animals have access to water and mineral in every pasture. Cattle should consume the available grass within approximately seven days. If it takes longer, they will return to previously-grazed areas and leave some areas to mature. Pastures not needed for grazing can be utilized for hay.

To divide pastures and hold in cattle, use one or two strands of electric fencing. Place cattle inside a pasture with a permanent fence that has a strand of electric fence along the interior to train animals to the fence. Also, make sure the temporary fence is properly grounded. Hooking a fence charger to the electric fence and to a ground rod made of rebar or water pipe is not adequate. For proper grounding, use at least three ground rods similar to those used as grounds in houses. Connect these rods in a series (driven about 10 feet apart) with clamps and wire that are made of the same material as the rods. If you use a galvanized ground rod, use galvanized wire secured with a galvanized clamp. Using the same metal prevents the oxidation that can occur when attaching a copper wire to a steel rod. The oxidized connection impedes the flow of current and reduces the amount of voltage available to shock animals.

In summary, beef cattle producers should ensure their animals utilize all the forage produced on the farm. Electric fencing will help create optimum-sized pastures.
Don’t Let Your Hay Go Up in Flames

Contributed by Dr. Clyde D. Lane, Jr.,
Professor & Beef Cattle Extension Specialist – University of Tennessee Extension

Producers spend a lot of time and money to produce hay for their cattle, so they should take care to protect their investment from going up in flames. There are several things producers can do to reduce the risk of losing their hay in a fire. All hay must be dry before baling. Wet hay in a bale provides the ideal location for spontaneous combustion to occur. Next, store hay in the barn only after respiration has stopped. Use a compost thermometer to monitor the temperature of several bales over time; when the temperature drops and stabilizes, respiration has ended.

Continue to monitor the temperature of the hay after it is placed in storage. The temperature should stay under 130 degrees. If the reading is over 150 degrees, pull the hay out of the barn to cool. If the temperature is 170 degrees or above, a fire is imminent. Contact the local fire department and have a fire truck on standby as bales are removed.

Producers should work hard to prevent hay fires. Not only is there a loss of value from the burned hay, there is an additional cost to replace the hay that will be needed by the beef herd, not to mention possible structural damage to the barn or hay shed.

<table>
<thead>
<tr>
<th>2011 Coming Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 21</td>
</tr>
<tr>
<td>July</td>
</tr>
</tbody>
</table>